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The chemistry of compounds having a double bond between 
two chalcogen atoms has been a subject of growing interest. 
Although thiosulfoxides (R2S=S) have been suggested as 
reactive intermediates in reactions of organosulfur compounds, 
there is no report concerning the isolation of stable alkyl- and/ 
or aryl-substituted thiosulfoxides.1 In contrast, the chemistry 
of their analogous compounds containing heavier group 16 
elements, e.g., chalcogenotelluroxides (RaTe=S, RaTe=Se) has 
received much less attention.2,3 Recently, we have shown that 
the reactive species generated on the heteroatoms of cyclic 
compounds involving multiheteroatoms were stabilized by a 
transannular participation of the second heteroatoms.4 We now 
report the preparation, first crystal structure, and reactivities of 
novel thio- and selenotelluroxides (1 and 2) of 5#,7#-dibenzo-
[fc,g][l,5]tellurazocine, stabilized by the transannular participa­
tion of the tertiary amine, and related new hypervalent azatel­
luranes derived from 1. 

When a tellurane, bis(2-bromomethylphenyl)tellurium dibro-
mide (7),5 was treated with methylamine, followed by addition 
of Na2S to reduce the bromine of the dibromotelluride, surpris­
ingly, the sulfur-substituted telluroxide 1 was obtained instead 
of /V-methyl-SHJ/f-dibenzot&.gHl.Sltellurazocine (3) (Scheme 
I).6'7 It has been reported that diaryl dihalotellurides (Ar2-
TeHah) were reduced to the corresponding diaryl tellurides (Ar2-
Te) upon treatment with Na2S or Na2Se.3 Actually, the 
dibromotelluride 7 reacted with Na2S to afford 5#,7ff-dibenzo-
[&,g][l,5]tellurathiocin.5 Thiotelluroxide 1 may be formed via 
an intermediary formation of a bromoarnmoniotellurane of 3 
derived after cyclization of 7 with the amine {vide infra). The 
similar reaction of 7 with benzylamine, followed by addition 
of Na2Se, led to A^-benzyl-5/f,7H-dibenzo[i),^][l,5]tellurazocine 
selenotelluroxide (2), which is the first example of an isolable 
selenotelluroxide (Scheme I).6-7 

I Z" + Me 
R 

3 X = electron pair, R = Me 5 Y = Cl, Z = PF6 

4 X = O, R = Me 6 Y = SMe1 Z = TfO 

8 X = electron pair, R = CH2Ph 
9 X = S, R = CH2Ph 
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The crystal structure of the selenotelluroxide 2 was deter­
mined by X-ray diffraction analysis.8,9 As clearly shown in 
Figure 1, the selenium atom in 2 is bound to the tellurium atom. 
The Te-Se bond length [2.445(1) A] of 2 is shorter than a Te-
Se single bond (2.54 A), which shows significant double bond 
character in the Te=Se moiety.10 The conformation of the eight-
membered ring is boat. There is a short transannular Te* • -N 
contact of 2.620 A, which is remarkably shorter than the sum 
of the van der Waals radii (3.70 A). The angle of Se-Te- • -N 
is 163.9°, and the C(l)-Te-C(2) bond angle is 102.9°. Thus, 
the configuration about the tellurium atom is distorted pseudo-
trigonal-bipyramidal geometry. The X-ray data suggest that the 
Te=Se moiety of 2 is considered to be stabilized by the 
transannular participation of the nitrogen atom. 

(2) (a) Hereinafter, the term thiotelluroxides and selenotelluroxides are 
used for the R2Te=S and R2Te=Se moieties, (b) No clear-cut example of 
the isolation of selenotelluroxide has been hitherto known, (c) The 
formation of tellurosulfide containing Te-S bond has been proposed: Detty, 
M. R.; Murray, B. J. J. Org. Chem. 1982, 47, 1146-1148. 

(3) (a) The Chemistry of Organic Selenium and Tellurium Compounds; 
Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1986; Vol. 1, Chapters 
3, 6 and 14, and 1987; Vol. 2. The term tellurane has been used for 
tetracoordinate tellurium(IV) compounds, (b) Irgolic, K. J. The Organic 
Chemistry of Tellurium; Gordon and Breach Science: New York, 1974. 

(4) Fujihara, H.; Mima, H.; Erata, T.; Furukawa, N. J. Am. Chem. Soc. 
1992, 114, 3117-3118. 

(5) Fujihara, H.; Takaguchi, Y.; Chiu, J.-J.; Erata, T.; Furukawa, N. Chem. 
Lett. 1992, 151-154. 

(6) The preparation, physical properties, and spectral data for 1—6, 8, 
and ,5N-labeled thiotelluroxide (9-15AO are described in the supplementary 
material. 

(7) NMR data. 1 (CDCl3):
 1H 6 2.63 (s, 3 H, NCH3), 3.89, 3.98 (ABq, 

J = 15 Hz, 4 H, CH2), 7.10-7.13 (m, 2 H, ArH), 7.36-7.42 (m, 2 H, 
ArH), 7.48-7.54 (m, 2 H, ArH), 8.61-8.64 (m, 2 H, ArH); 13C 6 41.6, 
59.0, 123.8, 126.6, 130.0, 130.7, 131.8, 139.1. 2(CDCl3): 1H 6 3.76,4.09 
(ABq, J = 15 Hz, 4 H, CH2), 3.94 (s, 2 H, CH2), 7.09-7.13 (m, 2 H, 
ArH), 7.33-7.36 (m, 2 H, ArH), 7.41-7.53 (m, 7 H, ArH), 8.65-8.68 (m, 
2 H, ArH); 13C 6 53.8, 55.6, 117.4, 126.8, 128.3, 128.6, 130.0, 130.5, 130.8, 
132.6, 133.3, 138.4. 3 (CDCl3):

 1H 6 2.31 (s, 3 H, NCH3), 3.76 (s, 4 H, 
CH2), 7.03-7.09 (m, 2 H, ArH), 7.20-7.22 (m, 4 H, ArH), 7.65-7.68 (m, 
2 H, ArH); 13C <5 42,0, 58.8, 120.4, 127.85, 127.9, 132.0, 134.4, 140,8; 
125Te 6 582. 4 (CDCl3):

 1H d 2.67 (s, 3 H, NCH3), 3.93, 3.99 (ABq, J = 
15.2 Hz, 4 H, CH2), 7.15-7.18 (m, 2 H, ArH), 7.35-7.40 (m, 2 H, ArH), 
7.47-7.52 (m, 2 H, ArH), 8.24-8.27 (m, 2 H, ArH); 13C d 42.3, 59.9, 
126.6, 129.8, 130.7, 131.2, 131.3, 140.1; 125Te o 1170. 5 (CD3CN): ]Ud 
3.09 (s, 3 H, NCH3), 4.56 (s, 4 H, CH2), 7.52-7.56 (m, 2 H, ArH), 7.67-
7.73 (m, 4 H, ArH), 8.18-8.24 (m, 2 H, ArH); 13C 6 44.4, 62.9, 124.6, 
128.4, 131.7, 132.8, 133.6, 141.8; 31P 6 -145.0 (sept, 7PF = 707 Hz; relative 
to H3PO4), in the region of ionic PF6". 6 (CDCl3):

 1H d 2.70 (s, 3 H, 
SCH3), 2.91 (s, 3 H, NCH3), 4.19, 4.38 (ABq, J = 15.5 Hz, 4 H, CH2), 
7.35-7.39 (m, 2 H, ArH), 7.51-7.59 (m, 4 H, ArH), 8.20-8.26 (m, 2 H, 
ArH); 13C 6 12.1, 41.8, 59.4, 119.3, 128.5, 130.7, 132.6, 132.7, 140.3; 19F 
6 83.5 (s, relative to C6F6), in the region of ionic CF3SO3". 

(8) Crystal data for 2: C2]Hi9NSeTe, monoclinic, space group, K i , a 
= 10.015(1), b = 10.497(1), and c = 18.001(1) Kp = 95.91(26)°, V = 
1882.2 A3, Z = 4, D = 1.74 g/cm3, Mo Ka radiation (A = 0.710 73 A), 
CAD4 diffractometer, 3181 with / > 3CT(/). The structure was solved by 
direct methods and refined anisotropically by full-matrix least squares using 
the MoIEN program package. The final R value was 0.029. 

(9) According to the X-ray analysis of 2, there are two independent 
selenotelluroxides, A and B, in the crystals. The X-ray data of crystal A 
are described in the text. The length of the Te-Se bond is equal in crystals 
A and B. 

(10) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell 
University Press: New York, 1960. 
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Figure 1. Crystal structure of selenotelluroxide 2. Selected bond 
lengths (A) and angles (deg): Te-Se 2.445(1), Te-C(I) 2.155(9), T e -
C(2) 2.150(8), C ( l ) -Te -C(2 ) 102.9(3), S e - T e - C ( I ) 100.5(2), S e -
Te-C(2) 98.0(2). 

The thio- and selenotelluroxides (1 and 2) were characterized 
by the following spectroscopic and chemical means. 7" - 1 4 The 
77Se NMR spectrum of selenotelluroxide 2 in CDCI3 shows a 
resonance at <5 —164, while its 125Te chemical shift is d 979, 
shifted downfield from the resonance (125Te <5 586) of N-benzyl-
5#,7ff-dibenzo[fc,g][l,5]tellurazocine (8).615 Both proton-de­
coupled 77Se and 125Te NMR spectra of 2 give a large 7 7 Se-
125Te coupling constant of J = 577 Hz. The 125Te chemical 
shift of thiotelluroxide 1 in CDCl3 is 6 1029. 

Desulfurization reaction of 1 with 1 equiv of (Et2N)3P resulted 
in the formation of the tellurazocine 3 (96%) and (Et2N)3P=S 
(99%).67 Treatment of 3 first with f-BuOCl, followed by 
alkaline hydrolysis, gave exclusively the corresponding tel-
luroxide (4) (81%).67 It is of particular interest that the 
telluroxide 4 was converted into the thiotelluroxide 1 upon 
treatment with 2,4-bis(4-methoxyphenyl)-l,3-dithia-2,4-diphos-
phetane-2,4-disulfide (Lawesson reagent, 10) (Scheme 2); in 
contrast, the similar reaction of bis(2-methylphenyl)telluroxide 
with Lawesson reagent gave the corresponding telluride as a 
reduction product.16 

(11) (a) The X-ray analysis of 1 or 5 showed the boat conformation and 
the existence of the transannular interaction or bond formation between Te 
and N atoms; however, the fine structure could not be determined. 
Nevertheless, the X-ray analyses have been performed several times, (b) 
The Cl" salt of 5 was converted to its PF6~ salt on treatment with NH4PF6. 

(12) The conformation of 1 or 2 can be assigned to the boat form 
according to the 1H NMR spectrum, (a) Gellatly, R. P.; Ollis, W. D.; 
Sutherland, I. O. J. Chem. Soc, Perkin Trans. 1 1976, 913-925. (b) 
Brieaddy, L. E.; Hurlbert, B. S.; Mehta, N. B. J. Org. Chem. 1981, 46, 
1630—1634 and references cited therein. 

(13) (a) The existence of transannular Te-"N interaction is supported 
by NMR studies; i.e., the 'H-decoupled 15N NMR spectrum of 40% 15N-
enriched thiotelluroxide (9-'5N)6 of N-benzyltellurazocine in CDCI3 exhibits 
one resonance at 6 43.1 which shows 125Te satellite peaks due to the 1 5N-
125Te coupling (JNTe = 37 Hz).13b'c While the 15N NMR spectrum of the 
tellurazocine 8-15N in CDCI3 shows a resonance at 5 36.3, both 1H-
decoupled 15N and 125Te NMR spectra of 8-'5N reveal none of the 15N-
125Te coupling, (b) 15N chemical shifts were measured by using CH3CN 
as an external reference (d 239.5) and were evaluated from a ,5NH3 external 
standard.130 (c) Levy, G. C; Lichter, R. L. Nitrogen-15 Nuclear Magnetic 
Resonance Spectroscopy; John Wiley & Sons: New York, 1979. 

(14) Reviewers pointed out the possibility of the dipolar form of 1 and 
2, but the relative importance of R2Te=X and R2Te+-X" (X = S, Se) is 
difficult to assess at the present time. Such a problem in R2Te=O has not 
previously been described specifically.3 Similarly, the same problem for 
R3P=Y (Y = S, Se) is still controversial.3 

(15) 125Te chemical shift is relative to Me2Te. 77Se chemical shift is 
relative to Me2Se. 
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The thiotelluroxide 1 can be reacted with thionyl chloride, 
SOCI2, to give a new chloro-substituted ammoniotellurane (5) 
(84%), which is consistent with the product formed from the 
reaction of telluroxide 4 with SOCl2.6 '7" The 125Te NMR 
spectrum of 5 in CD3CN shows a single peak at <5 1146, as is 
characteristic of a tellurane.3a 7e-Chloroammoniotellurane 5 
exists solely as a single conformer, boat form, from —50 to 
+120 0C, as evidenced from the variable-temperature 1H NMR 
spectral data. 7e-Chloroammonioteilurane 5 was converted 
quantitatively into the thiotelluroxide 1 upon treatment with 
Na2S,6 i.e., 1 arises presumably by an attack of Na2S on 
tellurium without reduction of halotellurane 5. This result 
suggests that the reaction from 7 to 1 likely proceeds through 
an intermediate of a re-bromoammoniotellurane of 3 formed 
by a transannular participation of the nitrogen atom. 

The selective S-methylation of thiotelluroxide 1 with 1 equiv 
of methyl triflate (MeOTf, Tf = CF3SO2) afforded a novel Te-
(methylthio)ammoniotellurane (6) in 85% yield.6,7 The tellurane 
structure of 6 is supported by the 125Te chemical shift of 6 
1014.3a The tellurane 6 exists solely as a single conformer from 
- 5 0 to +100 0C, as evidenced from its dynamic 1H NMR 
spectrum; i.e., the conformation of 6 was fixed as the boat form 
by a transannular bond between the tellurido and amino groups. 
The tellurane 6 consists of two unsymmetrical apical ligands, 
such as thio and ammonio groups, and two equatorial carbon 
ligands. Normally, telluranes have two symmetrical electrone­
gative groups such as oxygen atoms or halogen atoms at the 
apical positions, although the chemistry of telluranes is notice­
ably underdeveloped compared with that of hypervalent orga-
nosulfur compounds.317 

In summary, the transannular Te* " N interaction of new 
heterocycles can produce the first stable heavier chalcogeno-
telluroxides which can convert into the ammoniotelluranes as 
new types of hypervalent organotellurium compounds. 
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(16) (a) Sulfoxides were reduced to the sulfides on treatment with the 
Lawesson reagent, in which thiosulfoxides (R2S=S) have been proposed 
as intermediates: Rasmussen, J. B.; Jorgensen, K. A.; Lawesson, S.-O. Bull. 
Soc. Chim. BeIg. 1978, 87, 307 and refs lb,c. (b) Although Lawesson 
reagent is well known to be capable of effecting carbonyl-thiocarbonyl 
exchange,l6c Lawesson reagent acts as a reductant toward normal sulfoxides, 
selenoxides, and telluroxides. (c) Cava, M. P.; Levinson, M. I. Tetrahedron 
1985, 41, 5061-5087. 

(17) For a review, see: Hayes, R. A.; Martin, J. C. Sulfurane Chemistry. 
In Organic Sulfur Chemistry, Theoretical and Experimental Advances; 
Bernardi, F., Csizmadia, I. G., Mangini, A., Eds.; Elsevier: Amsterdam, 
1985; Chapter 8. 


